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A perturbation treatment of the Hartree-Fock equations using the inverse nuclear charge as 
perturbation parameter has been applied to several quasibound and metastable states of three-electron 
atoms and ions. The deviations of the results from the experimental values are discussed. The method 
should be particularly useful for heavier atoms and ions. 

Eine st6rungstheoretische Behandlung der Hartree-Fock-Gleichungen, bei der die inverse Kern- 
ladtmg als St6rungsparameter benutzt wird, wird ffir verschiedene quasibindende und metastabile 
Zust~inde yon Atomen und Ionen mit drei Elektronen durchgeffihrt. Die Abweichung von den experi- 
mentellen Werten wird diskutiert. Die Methode sollte besonders ffir schwerere Atome und Ionen 
nfitzlich sein. 

Introduction 

M u c h  theoretical work  has been done to solve the Schr6dinger equations 
of  c o m p o u n d  a t o m s  such as H - ,  H e - ,  L i -  etc., in the resonance energy range. 
General ly these resonance states lie in the con t inuum energy spectrum of  the target 
system and so are not  bound  states. Rather,  the wave function describing these 
states can be termed a localized wave packet  with a lifetime of ~ 10-14 sec. Since 
these states lie above an infinite number  of  lower states of  the same symmetry,  
difficulties arise in applying the known approximat ions  for bound  states to 
resonance states. Thus, while for bound  states these methods  are more  or  less 
rigorous, for resonance states they are more  empirical and therefore less predictive. 
It is convenient  to discuss the problems arising in variat ional  methods  and per- 
turbat ional  methods  separately. 

Variational Methods 

According to the variat ional  principle, opt imizat ion of  

E -  (W~rlHl~;,r) 

<Wtr [ ~/)tr) 
gives an upper  bound  to the energy of  the given state, but  only when ~Ptr is or tho-  
gonal to all exact lower states. Thus, for resonance states, or thogonal iza t ion to 
states is necessary, i.e., using the Rayleigh-Ritz, method  a secular equat ion of  
infinite dimensions must  be solved. Using the H F  method,  the min imum of  

(lPrw[HIWHF) is found by varying the one electron functions, but  again, one 
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must add the condition that ~Pnv is orthogonal to the exact lower states, get the 
corresponding integro-differential equations and solve them. This cannot be done, 
which means that even the HF approximation for the exact Hamiltonian of 
resonance states is not feasible. 

Perturbation Techniques 

One way of using such methods is to take the unperturbed Hamiltonian 

a s H = ~ A , + - - i  a n d H ' =  1 ~ _ 1  i rl Z i " ' "  ~o is chosen as the hydrogenic wave 

function of the given state. This gives E o and E 1 exactly even for resonance states, 
but problems arise for higher terms in the expansion of the energy or the wave 
function. To get the first-order wave function, the first order wave equation must 

- - ,  no exact solutions are be solved. As the perturbation is taken to be Z i , j  % 

obtainable. Therefore, variational solutions are tried and to ensure rigorous 
application of the Hylleraas conditions the lower states are to be taken into 
account, and ~r must be chosen properly. If the orthogonality conditions are 
not observed, variation will give only the extremum of E2 rather than the upper 
bound. However, in this case, by taking the exact zero-order wave-function, 
the exact E o and E t of the resonance state are obtained, and, in addition, the E a 
and E 3 obtained from ill-chosen tolt r will not be poor because the Hylleraas 
functional is dependent on Po. 

Treatment of the Resonance States 

The exact Hamiltonian of the compound atom in a resonance state is 

1 ~. --.1 The above should have made it clear that the eigenstate H = ~ h i  + Z - i  ~:j-rO 

and eigenvalue of this Hamiltonian for resonance states cannot be found rigorously 
by known approximation methods (as they can for bound states). However, as 
shown by Fano [1], resonance states are found in the vicinity of bound states of 
the unperturbed Hamiltonian Ho. This H 0 is part of the total Hamiltonian and 
must be chosen so that it does not contain terms causing interaction between the 
bound states and continuum states of Ho. The remaining part, H', expresses the 
interaction of bound and continuum states which physically gives rise to auto- 

1 
ionization. Thus, part of the interelectronic interaction ~ - -  is included in Ho, 

rij 
and the remainder leads to autoionization (or resonance). A proper choice of Ho 
and H' is one that will give good agreement between the calculated lifetime of a 
resonance state (or resonance peak width) and the experimental value. 

After an appropriate (and convenient) H o is found, approximation methods 
can be applied rigorously to find the states of Ho and this gives the resonance 
energies. In order to find the width and shape of the resonance peak, the con- 
tinuum states of Ho must be obtained and the interaction elements of the matrices 
through H' must be calculated [1]. The choice of Ho is not unique and is mostly 
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empirical, in contrast to the case of bound excited states where Ho is always the 
Hamiltonian of the system without the electronic interaction. Only comparison 
with experiment will show whether Ho was correctly chosen. 

To summarize, the main problem in calculating resonance states is to find 
a good Ho for the given state. From there on, the procedure is purely computational 
just as for bound states. 

The problem is made easier if, instead of diagonalization of Ho in Hilbert 
space, the full exact Hamiltonian is considered and diagonalized in limited 
Hilbert space, because then the task is to find a convenient basis set for the reso- 
nance states using the full Hamiltonian. That this is possible can be seen from the 
Feshbach formalism [2] as used by O'Malley and Geltman [3], according to 
which 

Ho=QHQ+PHP; H'=QHP+PHQ 

and the eigenstates of QHQ are equivalent to bound eigenstates of H o. It can be 
shown that diagonalization of QHQ in Hilbert space is equivalent to diagonaliza- 
tion of H in Q subspace. 

After the Q subspace has been found, the approximation methods appropriate 
for bound states will apply, on condition that they are restricted only to this 
subspace. A variational approximation using l])tr in Q subspace will give the upper 
bound to the exact eigenvalue of QHQ. 1/)tr can be improved by adding terms 
which also belong to the Q subspace. The truncation method [4] is actually 
analogous to the Hylleraas-Undheim procedure except that here all configurations 
are in Q space. The HF approximation using ~PnF e Q will give the HF solution 
QHQ and the correlation energy. In the perturbation-variation method, the 
Hylleraas condition will give the upper bound to  E~ xaet of QHQ if iDt r G Q is used, 
and so on. The requirement for all this, then, is to find the appropriate Q subspace, 
i.e. a subspace such that H' = QHP + PHQ gives a good width and H o - a good 
energy. 

Proper (exact) Q subspaces have been obtained [3] for two-electron compound 
atoms. For more complex systems, only approximate Q subspaces have been 
found [5]. For the H- and He atoms a projection operator was used, which 
excluded from Ipt r all configurations including is hydrogenic orbitals. The variation 
method was used to obtain upper bounds. Good results were obtained, showing 
that the Q subspace used, was appropriate for two-electron atoms. Working in 
the same subspace, Chan and Stewart [6] used the perturbation-variation method 
(applying the Hylleraas condition which, in this case, gives the upper bound for 
E~ xaet of QHQ), to get E0, E 1 and E 2. Inclusion of higher energy terms would 
give the same results as those of Geltman and O'Malley. Lipsky and Russek used 
a different Q subspace,/~tr consisting of configurations excluding the continuum. 

For three-electron compound atoms such as He-, Q subspaces can be used 
approximating those employed by Geltman and O'Malley for the two-electron 
case. The Q space is composed of all configurations which do not include the best 
possible approximate ground state wave functions. The remaining basis is not 
quite of the same type as the Geltman-O-Malley Q subspace because in this 
subspace the exact target states were projected out and not the approximate ones. 
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Hartree-Fock Calculations 

In the HF Method, the appropriate integro-differential equations are 
obtained after optimization of E (see above). The HF equations depend on 
the requirements of the trial lp HF. Introduction of the orthogonality requirement 
in the HF equations would give "constrained HF equations" (abbreviated to 
CHF). Overlooking this requirement, "unconstrained HF equations" (UHF) 
are obtained. Usually it is not feasible to solve CHF equations for resonance 
states, although for two-electron atomic systems it might be possible to apply the 
Q projection operator to q~HF to get the corresponding CHF and solve them thus 
getting the HF energy of QHQ. 

The 1/Z Perturbation HF Method 

This method solves the U H F  for resonance states, using the inverse nuclear 
charge as the perturbation parameter. Only zero and first order equations are 
solved exactly and the HF  energy is obtained to the third order: 

HF 2 HF HF 1 E3HF " E = Z E o + Z E  1 + 7 

Although U H F  are being solved, this perturbation method introduces some 
HF of the required constraints on ~0re s. The zero order U H F  are identical to the 

exact zero order Schr6dinger equation for the lower states when the interelectronic 
interactions are taken as the perturbations. This means that ~0o Hr which is equivalent 
to ~o~ xaet is orthogonal to all lower states (i.e. in the zero order approximation 
~nv in this method is orthogonal to all lower states). A choice of ~Oo Hv which fits 
the experimental requirements (symmetry, spin-state, etc.) gives Eo ur and E~ v iden- 

tical to E~ xact of the resonance state when - -  ~ - -  is taken as the perturbation . 
Z i•j rij 

Therefore discrepancies from exact values will arise only for E HF and Ea HF. 
It can be shown [7-9]  that the unconstrained ~p~F if expanded in terms of the 

zero-order wave functions contains only singly excited states. The exclusion of 
doubly excited zero order configurations which belong to the lower states leads to a 
sagging, A s, of the E HF value relative to E~ xaet. The exclusion of doubly excited 
configurations of the higher states leads to a raising effect, A,. 

Thus, clearly, in U H F  solutions E2 HF is not a rigorous upper bound of E~ xact 
and the discrepancy between E2 HF and E~ xa~t will depend on A s and A r of a given 
state. It is reasonable to assume that the method will give good results at least to 
a second-order if the two effects (At and As) are of the same magnitude. The way 
in which E~ F differs from E~ xaet is unknown. 

(If the CHF method is used, fulfilling the proper orthogonality requirements 
of ~p~F with the lower states, E HF will be a rigorous upper bound of E~ xaet and 
EHF~> E~ xaet will always be obtained because there will be only a raising effect 
(A,). The same is true for E HF of ground states and singly excited states so that 
in this case E HF and E HF can be assumed to be the true second and third order 
HF  energies.) 
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With a proper choice of ~v o, the present method gives the exact Eo and EI 
of the resonance state, and the total energy obtained by including the higher terms, 
i.e. E2 nF and Enr3, will approximate closely the experimental value if these last 
are near  E~ xact and E~ xact. However, the deviations of E2 Unv and E UHF from the 
exact values have been shown above to be somewhat uncertain. Therefore their 
inclusion would not necessarily improve the total energy. For light atoms in 
particular, E o and E 1 are not sufficient, and the higher energy terms are necessary 
for obtaining good total energies. The calculations done so far on atomic resonance 
states (He, H-)  show that (Z2Eo-k-ZE 0 is higher than Ere s and that E2 UHF, E UHF 
have negative values, improving the results. However, it must be remembered 
that in the present method energy terms higher than E 3 are neglected. This 
truncation error depends on the convergence of the energy terms. For heavier 
atoms (larger Z), it would be justified to assume that the truncation error is small, so 
that the proximity of the calculated resonance energy to the true energy will 
depend mostly on the proximity of E~ F and E3 nF to the exact energies. From 
previous analyses [8] it might be assumed that the deviations of E~ v (from E~ xaet) 
are small. Unfortunately, this assumption cannot be tested because of lack of 
sufficient experimental data for heavier atoms (see conclusions). 

To summarize, the deviation of Eav (as calculated by the present method) 
from the true value is due to two factors: 

1) The deviation of E2 HF and E HF from E~ xact and E~ xact respectively because 
o f -  (a) the use of the HF  approximation (general to all atomic states) and (b) 
the use of UHF (specific to excited and resonance states). 

2) The truncation of higher energy terms. 
Since (a) and (b) in 1) work in opposite directions on E~ v it may be assumed 

that E2 nF falls near  E~ xaet and for E~ F we may intuitively assume the same. 
If factors t) and 2) are of the same direction, then better results would be 

obtained for higher atoms. 
In order to check the above assumptions, experimental results for the 

appropriate states of atoms heavier than hydrogen and helium are needed. 
Finally, it should be stressed that in order to obtain accurate results corre- 

sponding to the real electronic state, ~pnv must be taken as eigenstate of S a and L z 
and must include other zero order degenerate states as well. As we shall see, not 
all these requirements are easily fulfilled for every resonance state and in some 
cases less accurate results are obtained. One must be aware of these inaccuracies 
and at least estimate the deviation from the values which would be obtained if 
the required "true" ~pnv were taken. 

Calculations and Results 

In the present work, the method described above has been applied to several 
bound or quasibound excited states of three-electron atomic systems. The states 
chosen were ls 2s 2 as, ls 2s 2p 2p, 2s 2 2p 2p, ls 2 2s(2p) zS(2p) and the metastable 
ls 2s 2p 4p state. The results obtained apply, of course, to the entire Li isoelectronic 
series (with an appropriate 1/Z scaling factor). However, only in the cases of 
He- and Li are there data (either theoretical or experimental) with which to 
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compare the present calculations. Two-electron resonance states [9-14a] were 
also recalculated and some calculations of bound excited states were made for 
comparison. 

To begin with, single-determinant approximations were made. In order 
to find the three-electron ~pnv and E2 HF, data from two-electron-state calculations 
were used. To calculate Ea nF, the Runge-Kutta method was used [121. 

The results of calculations for He, He- and Li are shown in Table 1, while 
those for bound three-electron states are given in Table 2. The corresponding 
experimental values are also given insofar as available. The expressions obtained 
for the energies are given in Appendix 1. 

Discussion 

As is seen in Table 1, the deviations from experiment vary considerably. 
This is due to the differences in the factors influencing the approximations involved 
in the various resonance states. Therefore, these states will be discussed separately, 
but there is a general problem which should be discussed first and that is the 
question of the reference state. Resonance energies are usually given relative to 
the ground state of the initial system, i.e. for He and He- resonances the reference 
state is the helium ground state. However, the question remains which value for 

Table 1. Comparison of calculated and experimental energies of He, He- and Li states 

State Experimental HF (l/Z) HF (l/Z)" HF (l/Z) b Other calculations 
(eV) (a.u.) (eV) (eV) (eV) 

He (e- He +) 

2s z 1S 

2p 21S 

2p z 119 
2s Zp 11) 
2s 2p 3p 
2pZ 3p 

He- (e- He) 

ls 2 2s 2S 
ls 2s 2p 2p 
ls 2 2S 2S 

ls 2 2p 2p 
2s 2 2p 2p 
ls 2s 2p'~p 

Li (e- Li +) 

ls 2s 2p 4p 

57.82 [15] -0.71955 59.41 58.28 57,80-57.94 [3, 4, 16-18] 
-0.77285 c 57.98 56.82 

62.15 [15] -0.56226 62.05 60.90 62,06-62.81 [3, 4, 16-18] 
- 0.57427 ~ 63.37 62.22 

60.00 [19, 20] -0.66869 60.79 59.66 60.11 [21] 
60.14 [22] -0.65356 61.20 60.07 59.59-60.27 [3, 4, 6, 11, 16, 17] 
58.34 [15] -0.75444 58.46 57.29 58.20-58.38 [3, 4, 6, 11, 16, 17] 

-0.70136 59.91 58.78 

19.30 [23, 28] - 2.14896 20.52 19.37 17.8-19.7 [28-32] 
19.5 [9,26] -2.14145 20.70 19.55 19.2-19.6 [32-34] 

-2.83490 1.85 0.71 
0.45-1.1 [35, 40, 41] 0.43-4.2 [32, 42] 

-2.83610 1.82 0.68 
57.1 [26, 38, 39] -0.75176 58.53 57.37 57.3 [32] 

-2.17083 19.92 19.79 [36] 

57.3 [37] - 5.36516 57.47 57.47 [36] 

" Relative to experimental ground state. 
b Relative to HF ground state. 
c Zero order degeneracy taken into account. 
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the ground state should be used in the present case: the experimental or the HF 
result. There are arguments for and against both choices and, as there seems to be 
no unequivocal answer, both sets are given in Table 1. 

Two Electron States 

For the 2s 2 and 2p21S states, the calculated value using one determinant 
would be expected to deviate from experiment more than the other singlet states 
(2s 2/)1p and 2p 2 ID). The reason for this, of course, is that the use of one deter- 
minant for ~pI~V including, e.g., a 2s one electron function is not enough to describe 
the experimental aS resonance state, the actual wave function being a super- 
position of 2s 2 and 2p 2 configuration. This will cause splitting, with two inde- 
pendent linear combinations being obtained. The exact energy calculated from a 
wave function corresponding to the configuration 2s 2 in the zero-order approxima- 
tion will fall between the two linear combinations, i.e. the order will be 
a 1 (2s 2) + b 1 (2p2); 2s2; a2(2s 2) Jr b2(2p2). Thus, in the case of an exact perturbation 
solution it would be certain that the inclusion of the 2p 2 configuration would 
give a lower energy for the 1S state. However in the present method there is some 
uncertainty in this respect mostly because the truncation errors may differ 
considerably for each case. It was suggested [3] that inclusion of (2p 2) would 
lower E nF by 0.011727 a.u. (0.319 eV). The use of extended HF equations [14a] 
takes into account the zero order degeneracy of 2s 2 IS and 2p 2 aS and the results 
are given in Table 1 (see also Appendix 1). They do not quite bear out the predic- 
tions. If the experimental ground state is used, the energy obtained for 2S 2 18 is 
very near the experimental value but 2p 21S deviates from experiment considerably 
more than in the single-determinant calculation. If the HF ground state is referred 
to, the situation reverses itself, i.e. good agreement is obtained for 2p 2 but agree- 
ment for 2s 2 is poorer than in the single-determinant case. Therefore, inclusion 
of zero order degeneracy does not quite resolve the situation. 

In the case of 2s 2p 1p and 3p as well as 2p 2 1O, a ~HF is used which is an eigen- 
state of S 2 and L 2 and there are no degeneracy effects involved. Therefore, the 
deviations are due only to factors (1) and (2) detailed above. 

Three Electron States 

For the ls2s  2 2S state, the unrestricted method was used [13, 13a]. For  
ground states, the method can be considered a definite improvement of E2 nv, but 
for resonance states, as mentioned above, this is not necessarily the case (although, 
in most cases, somewhat better results are probably obtained) and in principle it is 
not as important to use unrestricted HF for resonances as it is for ground states. 
The motive conducive to the use of unrestricted HF is the comparative ease in 
calculation. As single-determinant calculations were made, the ~pnv used was 
not an eigenstate of S 2. This inaccuracy affects only the second and third order 
energies and was presumed small. In order to check this, the restricted E2 nv of this 
state was calculated and the value obtained was only very slightly higher than the 
unrestricted value. 
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The ls  2 2s 2S or ls  2 2p 2p so-called single particle resonance is rather different 
from all other states. The resonance is believed to lie closely above the target 
state of the compound atom, i.e., ls  2 1S and its existence has been, and still is, the 
state of the compound atom, i.e., l s  2 1S and its existence has been, and still is, 
the subject of considerable controversy. If one accepts the explanation that 
it is caused by the trapping of the electron in the angular momentum barrier of a 
well set up by the induction effect of the incoming electron on the target, then no 
S wave single particle resonance would be expected [45]. On the other hand, 
stabilization technique calculations have resulted in a stable root of S symmetry 
at approximately the experimental single particle resonance energy [32]. In the 
present calculations both the S and P states were examined. There is no sagging 
effect in this case and E HF will be higher than E~ xact because ~/)1 t tv  includes only 
singly-excited zero-order configurations (i.e. E2 HE can be considered the true 
second-order HF energy). As the values obtained are very close together (Table 1) 
no conclusions can be drawn from the present calculations as to whether the 
resonance is of S or P type. 

The ls 2s 2p 4p state is metastable but not autoinoizing although adjacent 
to the continuum, as it does not interact with the continuum states. This means 
that the HF  energy calculations for this state are analogous to those for bound 
states, E2 tIE is an upper bound, and E HF is the "true" third order HF energy. For 
this state, one configuration can be used (~, e, c~) because it is an eigenstate of S 2. 
Since all three electrons are parallel, the correlation energy should be small and so 
in this case the deviation from experiment must be attributed mostly to truncation 
errors. 

The value for the ls 2s 2p 2p state in Table 1 is the result of a single-deter- 
minant calculation, with configuration lsfl, 2se, 2pe. This means that the calculated 
HF energy is that of a state which is a superposition of the doublet and quartet 
states, which may be considerably split (in this case the two different spin states 
begin to separate in the first order energy). An attempt was made to estimate 
the inaccuracy due to single-determinant use from calculations made on this 
configuration and the quartet state. 

In a three-electron atom or ion where each electron occupies different 
orbitals, we can represent the HF  wave function by 8 different determinants which 
are degenerate in the zero-order approximations: (ct, a, ~), (fl, fl, fl), (~,fl, ~), 
(fl, ct, ct), (c~, c~, fl), (~, fl, fi), (fl, ~, fi) and (fl, fi, ~). 

In order to obtain an HF wave function which is an eigenstate of S 2, the spin 
projection operator technique can be used so as to get 8 independent linear 
combinations which give wave functions which are eigenstates of S 2. 

The results are given in Table 3. lpa, ~Pb, IPc, and ~Pd belong to the quartet state, 
~Pe, ~Pl, ~P0, and ~Ph belong to the doublet (see Table 2). The quartet and doublet 
states are degenerate in the zero order, but in higher order approximations the 
states separate. (There is splitting between the 0Pe, lpr and (~pg, ~Ph) states also.) 
In the present calculations, as described above, only one determinant was used. 
For the quartet state the (~, e, ct) configuration was used, which gives the true 
value for this state. For the doublet state, separate calculations were carried out 
for the E nF of each of the determinants (c~, fl, ~), (a, ~, fl), (fl, ~, ct). Each determinant 
gave a different energy because none describes a pure doublet state, but rather a 
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Table  2. Comparison of Hartree-Fock and experimental eneroies for 
states 

and  Ions  47 

some bound excitedthree-electrons 

exp exp H F ~,HF, 1/Z ~?HF, 1/Z A E exp A E HF' a/z HF a Z E~s22s E~s22p E1 s 22s ~1sz2s ~ls  2 ap A Eo~p 
(a.u.) [43"1 (a.u.) [43] (a.u.) [44] (a.u.) (a.u.) (eV) (eV) (eV) 

3 - 7.4787 - 7.4107 - 7.4327 - 7.4285 - 7.3498 1.847 2.143 3.507 
4 - 14.3267 - 1 4 . 1 8 1 2  - 1 4 . 2 7 7 4  - 14.2764 - 1 4 . 1 2 2 3  3.959 4.194 5.561 
5 - 2 3 . 4 2 9 8  - 2 3 . 2 0 9 4  - 2 3 . 3 7 6 0  - 2 3 . 3 7 6 1  -23 .1271  5.998 6.773 8.237 
6 - 34.7873 - 3 4 . 4 9 3 1  - 3 4 . 7 2 6 1  - 3 4 . 7 2 6 5  - 3 4 . 4 2 6 4  8.004 8.167 9.819 
7 - 4 8 . 4 0 0 0  - 4 8 . 0 3 2 6  - 4 8 . 3 2 6 9  - 4 8 . 3 2 7 5  - 4 7 . 9 5 5 3  9.998 10.127 12.099 
8 - 6 4 . 2 6 9 8  - 6 3 . 8 2 9 0  - 6 4 . 1 7 8 0  - 6 4 . 1 7 8 7  - 6 3 . 7 3 4 9  11.993 12.077 14.554 

a A ~ ? H F  __  ~?HF,  1 / Z  ~Texp 
~ e x p  - -  ~ l s 2 2 p  - -  ~ l s  2 2 s  �9 

Table  3. H F  S 2 eigenstate wave functions 

S z Slz+S2z+S3z 

= _3 h 
4 2 

1 I h 
~Pb = ~ -  [(e, e, fl) + (e, fl, e) + (fl, e, e)] 4 2 

1 1 5 h 2  1 h 
~Pc = ~ -  [(fl, c~, fl) + (fl, fl, ~) + (~, fl, fl)] 4 - 2 -  

15h2  _ 3  
~P" = (fl' fl' fl) 4 

1 3 h 2  1 
- -h  ~Pe = ~ -  [2(fl, ~, ~) - (~, ~, fl) - (~, fl, ~)] 4 2 

1 3hZ 1 h 
~Ps= ~ [2(fl'e'fl)+(fl'fl'~ 4 - 2  

1 3h2 1 
- -h  ~P0 = ~ [(~, ct, fl) - (ct, fl, ~)] 4 2 

1 3 1 
~o h = ~ [(fl, c~, fl) - (fl, fl, ~)] --4 h2 - --2 h 

superposition of a quartet and doublet and so the (exact) energy calculated from 
one configuration must fall between the quartet and doublet states. However, 
the differences were small. 

Whether the E HF calculated using one configuration differs considerably 
from the E nv which would be obtained if one of the doublet states is used, can 
be estimated using the results of the quartet states and the results of the (fl, e, e) 
configuration (referred to as ~p thereafter). This configuration is a linear combina- 

tion ~p = ~/)e + ~ -  ~Pb" Since ~lDe I/Db) = 0 and (~Pe 1/41 ~Pb) = 0. It can be 

shown that E~ xaet 2 . . . .  t 1 - e x a c t  = ~-Ela  + ~-/~lq and similarly for E 2 and E3, where d,q 

are the doublet and quartet states. 
Eaa of the IDe configuration was calculated exactly because only the zero 

order wave-function was used. The result obtained was Eaa=0.6049965a.u. 
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as compared to 0.5854873 a.u. previously. Thus, for He-  we obtain 

AE1 = 2(E1 - E l a )  = 0.039984 a.u. ~ 1.1 eV. 

F o r  E HF only an estimate can be made because the 1 : 2 splitting is not exact in 
this case. However, if we assume that E HF does not fall far from the exact value 
of E 2 (and in the same direction), this splitting can be used for a rough estimate. 
The result is HF E2a ~ 0.36 a.u. so that AE~ v = (E  HF - E~ F) -,~ - 0.04 a.u. = - 1.1 eV. 
This means that the true doublet configuration would raise E 1 by 1.1 eV and lower 
E 2 by about  the same amount.  

For  E3 HF the separation is small so that the inaccuracy of using only the 
(fl, e, e) determinant is probably  negligible in this case. 

For Z > 2, ZEI is raised more than Ea is lowered, and so the E HF this deter- 
minant  gives is lower than what the doublet configuration would give. In such a 
case it is probably more accurate to use the E~ calculated from the doublet 
configuration. 

Conclusions 

The above results on He and H e -  resonances show that this method can be 
applied as a convenient and rapid technique for obtaining approximate values of 
energies for (doubly excited) resonance states. 

A clear advantage is, of course, that once the HF  equations are solved for a 
specific electronic state, all the E I~F energies for all nuclear charges can be derived. 
However, awareness of the possible deviations should be stressed. As mentioned 
above, these are dependent on Z. A larger Z value reduces the truncation error 
so that the deviation is due mainly to EI~ v - E~ xaet. If E~ F, because of the "raising" 
and "sagging" effects, is not far from E~ xact, the deviation of E nF for higher Z 
becomes smaller than that found for Z = 2. To study this point, it would be 
interesting to investigate energies of doubly excited states (for 2 and 3 electrons) 
for Z > 2 (i.e. Li, Be +), using more elaborate approximation methods. Alternatively, 
or even preferably, further experimental work (for higher Z) would be most 
useful. As the experimental results now available for comparison are confined 
almost entirely to He and He- ,  where Z = 2, we do not, as yet, know whether for 
higher Z better results are indeed obtained or whether the deviations are of the 
same order of magnitude. For  the single Li state available for comparison, the 
above prediction is borne out as seen in Table 1. 

A comparison with the bound states given in Table 2 is also interesting in this 
respect. It  is clear from Table 2 that in these cases the agreement of the HF. 
1/Z method with Roothaan 's  results is better for higher Z so that truncation 
errors decrease for higher Z. As to the correlation energy, its effect also is smaller 
(percentagewise) for higher Z (A Ee~ in Table 2). If the difference between the H F  
ground and excited states is examined, it is seen that agreement is much better 
than for the A n v  E~x p case. This means that the correlation energy is similar for both 
states. Here agreement with experiment is excellent for higher Z showing the 
effect of truncation errors to be practically nonexistent. It should be mentioned 
in this context that al though the method is certainly more accurate for these 
states than for resonances, the results obtained are sometimes better for resonances, 
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as a comparison of the two Tables shows. This is, of course, partly fortuitous, but 
is partly due to the sagging effect appearing for resonances but not for bound 
states. 

The use of this method for atoms containing more than three electrons is 
still simple (if we use single-determinant approximations). Therefore, the method 
may be used to get approximate values for more complex atomic systems. A com- 
parison of the results we get for two-electron and three-electron resonances shows 
that, contrary to expectations, the results for three-electron systems are much more 
homogeneous and better related to the experimental values. This is surprising 
because the convergence of energy becomes presumably slower with increase in 
number  of electrons. The differences in truncation errors would therefore seem 
to be small and one would expect to get deviations of not more than 1 -2  eV for 
larger systems. 

Appendix 1 

Hartree-Fock Energy Expressions 

Two Electrons 

1 Z2 0.0010515 
EHV(2p 21S) = - ~-  + 0.2167968Z - 0.0556355 Z 

1 2 237Z 0.038725 0.000557 EHF (2p 2 11))= -- ~ Z + 1280 Z 

1 2 77 0.0006465 
EnF(2s21S)= - ~ - Z  + ~ 1 ~ - Z - 0 . 0 2 0 0 0 6 5  Z 

1 Z2 49 Z 0.0043096 EnV(2s 2p ~P) = -- ~-  + ~ - 0.342419 Z 

EnV(2s2p 3p)= 1 2 17 Z 0.0012992 
-__~-Z + 1 2 8  -0.0194185 

Z 
1 2 EEHF(2s 21S) = - ~ Z + 0.122952443Z- 0.026327412 + 0.0151507 z +O(Yz2) 

1 2 EEnV(2p 2 ~S) = - ~ Z + 0.244235059Z- 0.057314532 0.0108466 + O(Yz2) 
Z 

EHF(2p2 3p) = _ 4-  Z + Z -  0.029338 0.000282 
Z 

Three Electrons 

EHF (1s 2s2 2S) = ( _ 3 ) Z 2 + O.5481958 Z _ 0.2249077 _ 0.040878Z 

1EHF(ls2s2p2P)= ( 3 ) Z 2  +O.5854873Z_0.3195984 0.0135531Z 

1 This expression belongs to the (ls/~, 2se, 2pc) configuration. The calculations for (lsc~, 2s/L 2pc) and 
(lsc~, 2sc~, 2p/3) give 

3 2 En~(o;fl, oO=(--~)Z + 0.5977136Z - 0.2767546 0.0622646 
Z ' 

3 2 E~(c~,c~,fl)= ( -  ~ ) Z  +0.5928363Z-0.2834884 0.0756959Z 
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EHF(ls2 2s2S)= (_ 9)Z2 + l.O2280Z_0.354811 0.05134Z 

EHF(ls2s2p4P)= (_3)Z2+O.546469Z_0.2361691 0.0552021Z 

EHF(2s2 2p2p,= ( 3) Z2 +O.445311Z_O.1439054 0.0298466Z 

EI~F ( ls2 2p 2p)= (_9)  Z2 + l.O9352Z_O.469779 0.106677Z 
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